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: ABSTRACT

&
Numerical studies of the initial boundary-value problem for the semi-
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linear wave equ‘aic::x\)

3
ot Upg = Uyy +u” =0
ceptTann

subject to,periodic boundary conditions  u(t,0) = u(t,2%), ut(t,o) - ut(t,zl)

BOwi % 8 P VS M

o mthl conditionldo.x) = uglx), ue(0,x) = vo(x), where uo(x) and

2 vo(x) satisfy the same periodic conditionl.\ suggest that solutions ultimately

- return to a neighborhood of the initial state ug(x), vg(x) after undergoing
. a possibly chaotic eyolution.
Cons:4ers
52_1-.-(:}\13 paper, an appropriate abstract space.is considered. In this space

a finite measure is constructed., This measure is invariant under the flow

1Y P

generated by the Hamiltonian system which corresponds to the original

)—/

equation. This enables one to verify the abov;k'returning property. &
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AN INVARIANT MEASURE FOR THE EQUATION Uyy = Uy, + ud = 0

L. Friedlander

0. 1Introduction

During the Sixth I. G. Petrovskii memorial meeting of the Moscow Mathematical Society
in January 1983 Professor V. E. Zakharov proposed the following problem. Numerical
experiments demonstrated that the equation
(0.1) Upp = Upg * U = 0
with periocdic boundary conditions wu(t,0) = u(t,2n), ut(t,O) = ut(t,‘n) possesses the
“returning” property, i.e. solutions appear to be very close to the initial state u(0,x) =
ug(x), v, (0,x) = vy(x), where the initial functions satisfy the above boundary conditions,
after some time of rather chaotic evolution. The problem is to explain this phenomenon.
According to the classical Poincaré theorem every flow which preserves a finite measure has
the returning property modulo a set of measure zero. The aim of this paper is to build
such a measure for the flow

$(t){uyix), volx)) = (ult,x), vit,x)) ,

where u(t,x) is the solution of (0.1), w(t,x) = u.(t,x), where the solution u
satisfies the initial data u(0,x) = ugix), v, (0,x) = vo(x). The equation (0.1) can b

rewritten as a Hamiltonian system

u, = SH/6v Accession For
(0.2) v, - -8H/8u NTIS GRA&I
DTIC TAB
with the Hamiltonian Unannounced u

Justification.

(0.3) mtu,v) = [ 22+ ul2 v obrmrex .
Our starting point is the desired formula By |
“H(u,v) Distribution/
(0.4) | Fu,vIau(u,v) = [ Flu,v)e n 1em(x)av(x) _“Availability Codns
xes —

" |Avail andfor |
for some class of “good" functionals Pr. Dist ’ Special

Al
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The right=hand side of (0.4) is the partition function. It can be determined by
finite dimensional approximations (2.3). Roughly speaking the measure 4y is the
"canonical symplectic msasure” Il dudv.r multiplied by the function e"H of the Hamiltonian
and is invariant under the flow (0.2).2, However, the correct definition of the &
involves some technical problems and the expression I dudv does not have any meaning
without the factor e~ H, The Hamiltonian H is the sum of

B (u) = [T a2z + uf7arax ana B,tv) = [ v’ /max
80 the measure du is the Cartesian product of the measures
~H,(v) -H,(v)

¢.!u1 =g T du(x) and duz =g I avix) .

The du‘ is correctly defined by finite dimensional distributions p(x,,...,xky
Egoeesbyde ,
au, {u(x)s (ulx,),ee0,ulx)) € u} = [ p(x,€)aE

which are proportional to partition functions

-I,(u)!du
(0‘5)

/ .
.n

Ej (xj)

which are calculated in Section 2. In order to formulate the result we introduce some

notation. lat x <y be two real numbers. U(x,§sy,nig) is the solution of the equation

Ugg = v} in the segment [x,y] with the boundary conditions U(x) = §, U(y) =n. Iat

hotx,Lay,m) = fzmi(x.hy.nn)/! + U‘(!.Evy.nn)/‘ld: -

min{fY(u?/2 + u'/a)as | utx) = &, uty) = n}

and let D(x,\;y,n) be the regularized determinant of the operator, see (4],
(0.6) - 87352 + 3% (x,E1y,m12)
in the segment (x,y] with the Dirichlet boundary conditions. The operator (0.6) is the
operator of second variation of the functional
f::(ui/z + u‘/l)d: 1 ulx) =€, u(y) = n

in the neighborhood of the extremum U. Then

(0.7) p(x,£) = <(x) oxp{= Thylx, 8 1%,,,06,,))
jl‘j’xj#1 oEj+1)

/ Tb(x
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™he function ¢ is dstexmined from the g‘auuen
J 5(:.()‘! -9
tl‘ is equal to
(0.8) otz R2 gL tx,, - x)"V2
with some constant d. The msasuze dll‘ is absolutely continuous with respect to the
¢ classical Wiener measure; so its support belongs to the space 14p%, 0 ¢ a < 1/2. After
replacing the functiooal Ey(u) with | (u2/2)ax the construction will lesd us exactly to
the classical Wiener measure. The &, is a realization of the abstract Wiener measurs
and it will be described in Section 3.
In Section 1 we investigate the determinant of the operator (0.8). 1In particular we
prove the formula
(0.9) ant (87! + P(x)) = det(a etz + 87 m(x))
: where 4, 1is the operator -42/8x? with the Dirichlet boundary conditions and F(x) is s
| nonnegative smooth function. The determinants of A° + ¥(x) and A° are equal to
exp(~C*(0)), where ((s) is the [ - function of an cperator; det(I +47'P(x)) is well
dafined Decsuse the operator 47' is muclear, AZ'F @ y,. The formula (0.9) is not used
S in our oonetructions dut we think it is interesting by itself. In Section 2 we calculate
! the partition function (0.5), in Section 3 we give the correct definition of the msasure
i 4 and finally in Section 4 we prove the main result:

Theozem. The mpasure 4 4ia invariant under the flow (0.2).

I. The Ssterminant of the Sturm-Liocuville operator with the Dirichlet oconditions.
? We investigate properties of the functional determinants by finite dimensional
appronisations. The key lesma is
Lesma 1. Let PF(x) € CPl0,a), p > 0, and let 8, be the cperator -42/ax? with the

. Dirichlet oconditions. Consider (W-1) x (W=1) matrices

P )
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2 -, 0-.. 0
“2 -1 2 -10Qn 0
Sy = Tl o and £ = g, 440 ¢
0 00000-1 2
wvhere
ar(3/¥) + r;:) 1f 1=3
(W) -
RP(I/M) +'j+1,j if {4 = 3§41

fhy1y =

BP((3-1/M) = x{T) o af 4= 31

0 if |1-3| > 1

a+28=1 and
lim,,, -axi'jlzi:)l -0 .
Then
det(x + A7'F) = Lim _ det(I + 'ty .

Proof. Consider the orthonormal basis Ey(x) = Y2/a sin(x kx/a) of the eigen-
functions of the operator 4  : A K, = A B, with Ay = **x2/22, x = 1,2,+¢+ « Denote by
H? the scale of Sobolev spaces which are generated by A;'/z t I (01 = A:/z. The

opsrator GN is defined on c“"‘r its eigenvalues

2
X,(‘“) -“—2 linz !2-',:-, k= 1,00e,8-1 ,
a
the corresponding eigenvectors
(W) _ (W) (N) (N) _ - _
L “k‘l reely N_1) with L Y2/a sin(% ks/N}, k,s 1,000 ,N-1 &

We normalize ﬁ((ﬂ) by the condition
(N) (2 a N-1 (N)(2 -
lek | N lgat l.kll 1.
Let l;‘; be the space €1 yith the norm [+| and let hf be the same space vith the
2
norm |y|' = |6;/zyl- Now we introduce the interpolation operator i, ! e * Lzlo'll and

the restriction operator Jjy @ 12[0,a] + l::

A

'
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1“.{u) - Bk(x)' k= 1,..-""’ ¢
c,(‘"’ 12 k= 1,... 01
I (X =
0 if X>N .

- We split the segment [0,a] into N equal parts by the points 0 = x5 < x,< *e¢ < x ., <
Xg " arxy= ja/N. The iy is the operator of trigonometrical interpolation of the values

at x41 In = Py vhere Py is the ortho-projector omto the subspace spanned by

M ’
. Lot
. FATTRIAAAN

\._\ '1,..0,"_' and

G = (G(a/M),.s.,G((N=1)a/M)) .

Wt '

:‘.?; First of all we notice that the norms of iy and Jjy as operators which map h= into l:

and RS onto h§j correspondingly are bounded by constants which do not depend on W

because

1¢ xk/xl““’ - (n k/2M)2/81n(x X/20) € ¥3/4) K = 1,000,001 .

Consider the finite-dimensional operator

2 - 1“5;‘1'“5“ s 1210,a] + £2[0,a) .
Clearly

det (I+Ty) = dct(1+6;1fu) .

8o the convergence of Ty to T = A;‘r in the space Y1 of nuclear operators implies the

assertion of the lemma, see [S5]. We split the proof of convergence into the following

steps. The operators

(1) Ty are uniformly bounded in the space L(chllg) of linear operators 12 + n:.

(11) T+ T in the space L.(Lz,nz) with the strong topology. Let ¢ be a trigo-

nometrical polynomial. Then

18- ™ = 185 1E L - 3000 + 180T (I-R P

(I.I)
. -1 -1 -1
+ (1“6“ j“ - Ao )rkr(x)o - Ao (I-Pk)r(x)¢ .

The second and the fourth terms on the right hand side of (I.I) converge to 0 uniformly
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with respect to N when Xk + ®, Operators (1‘6;11“ - A;‘)Pk have orthonorsal basis of
eigenfunctions Bj(x)- The corresponding eigenvalues are equal to

a?/(an?ain?(x y/2)) - a%/(x%3%) B2 o 4r 3 < k-1 ana

0 if 3>k
therefore the third term in (I.I) converges to 0 when N + e and k is fixed. Let
N
(27, - £ 1000 = (v, piM)y

Then

(w)

vy" = Br(3-nanss=nam + £ eccs-tam)

+ aP(Ja/M)e(Ja/m) + z;f;otja/u> + BR(3a/M)4((3+1)a/M)

() N
+ 74, 50U+ )3/M) = P304 (32/9)

and lm -ley;"l = 0. Thus |(f,r, - rF)| + 0 in z:. Further, (ry = 3,)M + 0
when N + & and ruo - qu if N is sufficiently large. So the first term on the right
hand side of (I.I) converges to 0 when N + ®», Combining the results above we obtain
that ‘ruo + ™. The set of Ty is bounded and trigonometrical polynomials are dense in
x.zr hence 'r“ + T in strong topology.

(111) T, * T in the space [ (22,83), by virtue of (1), (i1) and Banach-Steinhaus
theorem.

(1v) T, * T in the space L(e%,82), 8 > 0, by virtue of (1ii) and the compactness
of the imbedding HS S 12,
The space L(x%,B2) belongs to Y1(!:) when s < 1, see [6). Hence T,*T in

71(‘:)' 0<s <.
s}

Lemma 2. Let F(x) @ c2(0,a] and let A(x) be the solution of the equation
At (x) = F(x)A(x)
with the boundary conditions
Ala) = 0, A'(a) = -Ha ,
vhere A‘(,‘), vVe0,1,..0,8, N= 2,3,..., satisfies the difference equation

2,2, .(N) _ (m) ), . o
(W“/a )(A“_" zA“ +Av.1) P{(N=v)a/N)

A T e A T N e
» . ‘e %
,‘.'{’.i&::\.":'. oo s
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with

Aé“) -0, Agu) - HN
Then .

Ao) = 1im AT L M

proor. tet R = al® - a(w-viam ana cfM - RV - R%). Then
2,22, 0(R) _ p(¥) | p(H)) o p((xe (M), p(M)
(1.2) w2/a?) (R - 20(M) 4 (F)) = p(nevIaOREY 4 B
and
2,02y _ oMy o pene v oolN) ()

(1.2%) /a2yl - e = reievianm £ el + b

with Rém =0, RSN) - cgm + O(N':’) and b\(,m = O(N'z) uniformly with respect to v.
Clearly c\‘,“’ are bounded by the solutions of the equation of the type (I.2°') with
P{(N-v)a/N), h\(’m and c(1!l) replaced by C, = sup|F(x)], czlnz and C:,/tl3 respectively.

Hence R\()m are bounded by the solution of the following difference equation

2,2, (N) (N) (N, o (N) 2 _(N) _ (N) 2

(N“/a N'vﬂ -x, + rv_1) c1r + cz/N ] ro 0, r, c3/u .

The general solution of this equation is
e = st ? 4 aMI (MY g NI ()Y

with X(t“) = 13 c‘/n 4.0 and xi“’xf“’ = 1. According to the initial conditions

a(N) + s(N) - C5/N2. um)XiN) + B(N)liu) - C3/N2 .

Hence
2 -
a™ = (cp™ind - ey - 0 o, 8™ w0
Therefore
(N) 2 N M o
!n < CS/N + C6(1+C.’/“) /N € Ce/u and RN o(N ) .

Theorem I. Let F(x) € Czlo,a] and let A(x) be the solution of the equation
AT'(x) = F(x)A(x)
with the boundary conditions
a(a) = 0, A'(a) = -I/a .
Then

aot(z+A;‘r) - A(0) .

-7~
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Proof. Let fy = dlag(P(a/M),...,F((F-1)a/M)) be the diagonal matrix. By Lemma 1
Jn - ! et
det(xea>'r) = 1m  ser(zes e R
[ 2-1...0f" 2+ar(amin? -1 ... ° P
“1 2...0 -1 .. .+ R

-] det AOtE cscvcevscsscsssesscsnsssnrsssssescs

‘ﬁ“ X EEEXEYKN] 0 ‘1

y 0 0.2 0 cevonneee =1 2¢0°P(N-1)a/M)/¥

- lim ¥ laet Dy *

Above we have used the relation

CAA AT 0 T R ST ek T e TR 5 AANS, %5 AL ¥ 5 ol T T N

2 -1 ...0
-1 2 .--0
det =X ,
o o L) .2
which can be proved easily.
By elemsutary transformations the matrix Dy can bs transformed into .
]
n- V1 -1 0 +s. 0
0 Vz =1 ¢ O

-~

tecssecossccese

i‘ 0 0 0 ...v,_1

o with

v

~ * () vy = 2 +a?P(3a/MI/W2 = vy, vq = 2eaPla/mi/NE.
! Our aim is to £ind N lv,... vy Let

.z

e T LU L N L P

R=V N-1 N=v
It follows from (I.3) that

(2zatyall) - ™ . A“") - r((N-v)a/mA(®)

) _ " _
Ao 0, A1 I/8

PR RUREIRIY % 2T PLY PR
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e"d e sT 87 ¢ NI
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The value
-1

L A () M) _ (W)
N et Dy = AoV * Byay " Ay

converges to A(0) when N + » by Lemma 2. The theorem is proved.
D

Now we shall prove the formula (0.9). Let us remind the definition of the determinant

of a positive unbounded operator A. Assume that A’ e Y, for some positive 0. One can

» define the function

.: -t

- T8 = )

h which is regular in the half-plane Rez > 0. In some cases (e.g. if A ig a pseudo~

differential cparator) this function has the meroworphic continuation. It may happen
that 0 is a reqular point of this [ - function. 1In this case we say that A has a

deterninant and

det A = exp(-§,;(0)) .
This definition is a generalization of the finite~dimensional determinant.

Theorem 2. let 8> e, > 0 be a positive operator in a ssparable Hilbert space H,

let s"’ew1 for some O, 0 C 0 <1 and det 8 be defined. Let T be a bounded

operator. Then there exists a conatant C which dspends upon and 1T only, such

%
21

that det A(e) = det(5+eT) is defined when |e] < C and is equal to det 8 det(I+e8™ T).

Proof. One has the following integral representation on the strip 0 < Rez ¢ 1, ses

(71

A7) = BBEE % e FieziaienTae

-t _ginw g @ g . __,.kk “tmk -1
87 ¢ == g v T L (=1TETI(LI48) T T T(tI48) T 4t .

If ¢ < co/l'rl we can change the order of summation and integration:
(1.4) ABe) - 87F = MBI E B (n)kek [T e ene I R een) e

Let us show that all terms on the right hand side of (I.4) are nuclear operators and

estimate their Y, - norms which will be denoted by |||+]!/|. oOne has

AR RN
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1 tcezes) 'R er+s) "N | < J118™01]) « niceres) " T ¥ (e1+s) "%

< °(1-0)"%" ur e > e _(1-0)/0

S < |11l - ITIk(t+co)-k

. [+

. co/(t+c°) if ¢ < c°(1-o)/b .
Therefore B

g t72(e1+8) " 1% (e1+5) ot ] ||
< 11171« 11510107 (1-Reg) Tlo K *II-ReE 2

. + 6"(1-0) "% (Reztk-0) "' K TITRER) .
Thus the series (I.4) is Yy - convergent when € < co/l'rl and it defines the Yy - valued I -
regular function on the strip o-1 < Rez < 1. Hence cA(e)(Z) has the meromorphic .
extension to the half-plane Rez > 0~1 and 0 is a regular point of this function:

- -t I I % L -1_.k -1 T

: Tage)(0) = &gl0) = L, _ (=1)"¢ Jo Te{l(tI+8) "TIT(tI+8) lat . Sl
Note that

" & teres)T'm* = T (enes) o (enes) T icezes) T N S

;: Hence

. relier+s) M ¥ (erem) 7Yy = - % %E rer(eres)” m X

N and

5 L (0) - gao) = IT 1R E JT & rrrceres) T 'mkae

- ace) ts k=1 ¥ loa ™

’; = 7 =15eX T e (sTImF < cmr tog(zees'y .

3 Thus

fj det A(€)/det S = ‘*p{'[‘i(e)(o’ - gg(0)]} = exp Tr 109(1*€9-1T)

: - det(I+es 'T) .
Y o
Corollary. let S be the same operator as in Theorem 2 and let T be a non-negative

bounded operator. Then det(S+T) is defined and

-~10-




det(3+T) = det 8 det(1+8”'T)
Proof. Mote that 8+¢T > L for every € » 0. So we can apply Theorem 2 N times
4f W is sufficiently large and cbtain
det(9+7) = det 8 n,":; s (s~ V(sem™ ')
The product T in the last formila is equal to the det(I+8”'T), as follows from the

1dentity
(1.5) dn(:n,s"r)d-e(xnz(m1!)":) = dot(I¢(e, + cz)s"r) .

Pradte A

In oxder to prove this identity we introduce R = ~1r and obtain

& - -y -t -
] (x«'a ‘!)(I-H:z(m"!) T) = I«,n + cz(z-n‘n) R+ ¢1¢23(1n1n) R

: - -1 -1 -1

b I-n:‘nnz(x#c'n) mz(xn'n)(1n1l) n-cz(zn1n) Rw x+(c1n2)n .

Wow (I.5) follows from the well known formula

Aet(I+A¢)det(I+hy) = det(I+Aq)( I+A5)

1

1 with Ay, A, €Yy, e.g. ses (S].

< ju]

,,,

. Formula (0.9) follows from the corollary. Note that

- - - .

gy (2 = (/)7 2C(2) ana det &) = (va)e” (O

" °

- where ((z) is the Riemann [ - function.

X 2. Calculation of the partition function )
(2.1) stx,iym = | expl- JTu2/2 4 wl/0ras} M auimy

4 u({x)=f s@ix,y)

! u(y)=n
Let us split the interval ([x,y] into N equal parts x = x5 < XyCeeeCy = y. Consider

N

N the finite-dimensional approximation of 8

8 = ) ompl-I]_ nla/m,E,_ £ 00eE 0k,

AV Ry

with a=y-x, Eo =£, E“ = 1) the dsfinition of the function h is given in the
introduction. The invariance of the equation wu,_ = u’ under the transformation

a(z) + ¥ 'u(n"'z) leads us to the homogeneity property

a{{=

_.,.,,
e

»
-
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(2.2) h(a/ﬂ.ﬁj_«‘ :Ej) = “Jh(lvej_1m'£jm) .
Therefore
-1 k } N~2
8y = ¥ ' [ exp{-w>thta,em,E ) + Tios hlasEy_6)
(2.3)

+ blaby M) Q6 el

We can apply the Laplace method to the integral in (2.3). The function I(E,,...,E“_') in
the square brackets has the unique stationary point (E‘:,...,E:_1)
&5 = ¥ MU0 Ery nixeiamy

This point is the point of its strong minimum.

3.0 -]
o -1 (N =N"I(E IEXXY} _)
-1)/2= Yy = 8172, 1ere e ofyey

8, = (21) (e 'y,

where
- ve p© o
D, = detiT'* (£S5, ..by M .
By the homogeneity property (2.2)

NSI(E:’:-'-oE:_1) - Nah(muE/ﬂrn/N) = h(a,E,n)

and
-{N=1) =(N=1) 1 1
D =¥ Ly =N LI AR COVETEI e L
with
N 1 )
J :j"1 h(aN:E,_,.Ej), €j “Ej .
Finally

—1y/2 -1 o _
SN - (2')(N 1)/2LN /2. h(a,Em)“mm 1))

Proposgition 1. When N + =
1, = /2" Naercrraar vl Ly e (0000

Corollary.

- - -1
lim(2va)!! “’/2u“/2s“ - [det(I+3A°1uz(x,Eiymlz))] 72
N

."h(Y'xcE,ﬂ)

The expression on the right hand side of the last formula will be called the partition

function S.
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Proof of Proposition 1. Let L., = J:° (E':---'E' )¢ From the definition of J it
13 ‘1‘3 1 N=1 .

folléwa that

2%n 1.1, 1,1
ij ;i (Traj_1 cE’) + ‘a-? (1'1;’:5’,")1‘ =a/M

2% 1.1
Ly,g¢1 = Pyer,9 = 3000 (Tefyban)

Ljy =0 when Ji=3] > 1 .
a). Calculation of L”. By the dsfinition of the function h
1 1 2
az t u;(Ej_VE,EJ"u) 4
2

u
eI ey ‘T]dqz-c

’ ’

. 3
where u is the solution of the Euler-Lagrange equation u'' = w3 for the energy
functional, with the conditions u(-T) = £} ,, u(0) = €, u(x) = £} .. By the formuls for
the second variation

L, - JI0e? + 3udvPia
vhere u, = u(E;_‘-E;.E;ﬂ::). v is the solution of the equation

v'' = 3u:v, v(t) = v(=1) = 0, v(0) = 1 .

Integrating by parts and taking into account the relation u:,' - u:, we obtain

L.ﬁ = y'(=0) = v'(+0) = ~[v'](0) .
Let us split v into the sum of v, and w:
1
v'!''= 3(;
(2.5) ©° 3

Y s Wt - 303w = 3(u) - (E;)zlvor v (1) = v (1) = w(=1) = w(0)

=w(t) =0, vo(O) -1 .
The first equation in (2.5) has the solution
v (z) = eh a(t - [2])/sh at, @ = /7 |z;| .
The solution of the second equation in (2.5) has the representation

- 32" (-1)IM 2,3 2 _ 1,2
(2.6) w(sz) “3-1( 1) (Sx\ao) x(uo (Ej) lv°
vhere K is the inverse to =-42/ax? with sero conditions at the points £t and 0. It

is an integral operator with the kernel

k.
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Ixltr = fyloise 1 x| < ly|, sign x = sign y
K(x,y) lyltr = Ixhsn 12 |x| > |yl, sign x = sign y
0 if sign x ¥ signy .

The series (2.6) is asymptotic with respect to T + 0 because K 1is of order T. Hence

- ~ 2 _ (12 - <1 [T {T=2)sh a(t-2) 2 - wlfe - 3
[w'1(0) ~ (3K(uj (Ej) ) v ! 3]° ——%F—“———-(uc(l) uo( z))dz = 0(t”) .

Further,

«[v'](0) = 2acthat -34»3021 +oth .

Finally,
(2.7) 1, = 2. m 2t + o(13)

b). Calculation of "j,jﬂ' By definition

2 ut{€,nss )

Ly,3¢1 © 3’!5' 0 [-"'T T]°’|
E-Ej'“-€j+1

with u(f,niz) = U(0,8;t,ns2). As above one can easily check that I.j 341 = y'(t), where
’
v(t) is the solution of the equation v'' = Sugv with the boundary conditions v(0) = 1,

v{t) = 0; u_ = u(t),e) ;2). splitting v into the sum of Yolz) = sh a(t = |z|)/sh ar

3775+
and w(z) we obtain that

1

2
: - e u 3
votr) Tt e * o(t”) ,

Ttz ,2 1,2 2
Wity ~ 3 Jo T - (Ej) v dz = 0(17)

and finally

1

-aded V2 2
(2.8) Lj,j-ﬂ Tt 3 (Ej) T+ 0(1%)

Now it remains to apply Lemma 1 with

Flz) = 302(x,£ry,nrx+z), a=2/3 and B = 1/3 .,

3. The measure dy
Let us fix points xq € X <+s+< X < Xq + 27 on the circle. Consider the function

S(x,8) = s(x1 151,’(2152)3(’(2152"‘3153) .. -S(xk,Eer1+2ﬂ 1E1) .

Proposition 2. Let 85 - (x’l"‘lle"'lxk)l 53 - (5‘1000 'Ej'...'ek) (the sign

means that the corresponding variable is omitted). Then




RTINS A e \'“.'."'\f.'.r-‘"."."~?.‘-‘-.‘.f.'.r?".r.'.f.".".'.'.'s‘~f.f.r."-r-'\'.'\‘ A

(%, q=X (X =%, )
- (21)1/2/ 203 31 gy

{3.1) s(x.ﬁ)dﬁ [
I 3 %4175 41 3

E;) .

We assume that x, = x, - 2, Xy = Xg * 27, ;o = Ek' Ek+1 =g,
Proof. let all ratios (x,,4=x,)/(X;,1=%,) be rational; x,,y=xy = N,T. By

Proposition 1

(-m/2)IN (m/2)IN e
| stx.8rae, = 11m (20 2 (2m) Lm/o) !
| ol e
(m) O
B (xy g%, 2 [ expl- Incr/mel™ et S

v+1 d£5

wvhere x4 = x%‘) < xg‘) < «ss is the partition of the circle into squal segments of lenth

7/m. On the other hand

- =-(m/2)IN
S(x'.E') = 1im (2m) X125y, i
3%y = 1n
- (m)
k R WA e - (m) ,(m); &
Lomy % ypq~x,) (xj+1-xj)(xj'xj-1) exp{- Ih(t/m,§, ’Ev+1} &

The realtion (3.1) follows from the last two formulas. In the general case it is valid

because of the continuity of both sides.
m

Corollary 1.

-1 k/2 pk e 2122
(3.2) | stx,8186 = o7 (2mVE M0 (x-x )

with some constant 0. Actually,

(k=2)/2 .k

1
o 128(0,6020,6)

| stx,EraEy = (2m) no_ . (x

vt %y
Simple estimates show that
o™} = [ 8(0,612%, 6088 <= .
Corollary 2. The functions
. -k/2 o P
(3.3) p(x,§) = o(2¥) H(xv+1 x“) S(x,E)

are finite-dimensional densities of a probability measure du,. 1Indeed, they are

1

-15=
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continuous and satisfy the agresment and the normalization conditions.

Let dar be a conditional Wiener measure, see [8), in the space of continuous

functions which vanish at some fixed point x, on the circle: &(f) = t(xo) = 0, and

- 3
o = av x (27) 2 exp(-82/2)4

is the measure in the spacs of all continuous functions.

Proposition 3. d&u, 1is absolutely continuous with respect to d&w and
>, au,

I 1, .4 1,2
:;: (3.4) :7_ (2) = g(2n) "2 exp( 7] £ (x)ax + 3 £ (xo)} .
Proof. Let us choose a function £, & partition x, < xq <...C Xy <X, + 20 oOf the —

circle and a set
\: nk
E . ne ’w(!(‘j’ - €, !(lj) + ‘) .
: We assume that Ix,”-zjl <€, 3= 0,000,k By (3.3)

au, ) = au, {us (alx,),000,u(x,)) € N}

- =(k+1)/2 ok 2
o(2v) tv-o"\wl-‘v, ]"l(x't)d .

Using the definition of h and Theorem ! we can obtain after simple computations that

k 2 1 4
B(x,8) = expl= To_(E, €07 2(x, jox.) - g ] £laxk(tvo(1))

) wvhen € » 0. Thus
- K} ~
s au, ) = o) 2 exply £2(x) - § | thax} W01y .

Corollary. The measure du1 has a support in the space u;‘, a < 1/2.

3 For the definition of the d&u, we consider functionals Ay and B

v-loi't(ljoo.jy#lvlln\'y) .

et M <RI mnen by definition

Auylve (A ,eee/AgiBy ece,By) €M} =

= 7, emploma? - /2) T, 03 + sl

The t!u2 is a realization of the abstract Wiener measure. It has a support in the

o space of generalized functions

J 1
Mp,z-c-Conlt+%Llp ,E50 .
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4. Invariance of the dau

Let &(t) Dbe the flow defined by (0.1). First of all we intend to prove its
continuity.

Lemma 3. &(t) maps continuously the space Lip“(ﬂ') x L1p°-1(81) into itself,

ocac<l.
Proof. Consider two Cauchy problems
3
utt L. +u =0
o a=1
ult_o = u (x) € Lip, “tlt-o = v (x) @ Lip
and

Wee = Vxx = 0s Wleag = uo, ‘k't-o Vo

If 0<t«<¢mw,

uo(x+t)+u°(x-t) R l Jx¢t
2 2
Clearly w e Lip“, LA e Lip“" and (w,w,) depends continuously on (u,,vy). Let r{t,x) =

v (y)dy .

wit,x) = x-t ‘o

u-v. Then

Tee = Txx * (r+w)? = 0, r]pp = felemp = 0

and according to the Duhamel principle

r(t,x) = -J: ar | 215:!1£:Il§g$¥:¥:£$ll [x(y,T) + '(y,t)]ady

The expression on the right hand side of (4.1) is a

(4.1)
whers © is the Heaviside function.

contraction operator in a ball in cC({0,t], Lip®) when t is sufficiently small.

a-1

Therefore (r,r,) € Lip° x Lip for sufficiently small ¢, and hence

(u,u.) € Lip® x L1p°_1- Now the assertion of the lemma follows from the group property of

é(t) and its invariance under the transformation ¢t » =t.

0

Now we shall build the finite-dimensional approximation of &(t). Let us divide the

circle into 2N+1 equal parts by the points yj = 2x3/(2N+41), 3 = 0,...,2N. Let Ej' “j'
)= 0,.0s,2N, be some real numbers. We denote by uN(E,x) the solution of the equation
Uy = ul which satisfies the conditions “u(Ele) - Eji

N
‘o + tj_'(h cos jy + B

3 sin iy)

vn(n,x) - 3

-l?=




is an interpolation trigonometrical polynomial, that is
(4.2) ny=ag e z:_,(av coa(203/(2Me1)) + B sin(2w3/(IMe1)) .
Clearly

a2+n?) .

(4.3) o nla mmn + (2W+1)/2 :,_‘( 303

=0 )
Let
4

n (€,n) -1'- ::‘_'o ny ¢ +qleax .
| 4 0.(1:) we dencte the Hamiltonian flow with the Hamiltonian Hy:
(4.4) t, =My =ng f, - - AL, .

Let u(x) € Lip®, vix) € Lip™', 0 ¢ a < 1/2. For a finite-dimensional approximstion of

(E,x)
![""" -

these functions we take wectoxs
€ alx)) = (WY )reeerulyy)) and n"(v(x)) = (M seeeinyy)

with n’ defined by (4.2); A and B are Fourier coefficients of v. By ry Wwe dencte
the restriction operator ry(u,v) = (E'(u). (v))s iy is the interpolation operator,
14(E,m) = (u (K,x), vy(n,x)).

Lemma 4. Let u(x) € ¢ and w(x) € c'. Then

1,8,(t)r (0, v) + 8(t)(n,v) when W+ e

in the space ¢l @ C.

Proof. Using the formula of the wvariation of s functional with a free end, we obtain
that

2wt
an.ﬂt, i ln.(t.yj)l .
The function u satisfies the equstion u}’ = e e; + 0(1M). Solving this equation

without the term 0(1/M) and uunung the remainder, we can easily obtain that
=-2E.+¢
.._. -..1’_’__1_1_1.4 g + 00IM) .
(2n/(2m+1))
Thus (4.4) can be rewritten in the form
- +*
o San % ;ﬂ - g2+ 000m
37 2w/ 3
The initial conditions are E,(o) - u(y,) and "3‘°’ - v“"(yj). vhere v(®) 15 the

(4.4%) Ej «n

partial sum of the Fourier series of v. We have that v“"(y,) -viy) = O(I'"‘),
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€ > 0, uniformly with respect to j because v @ cl. The system (4.4') with such initial

S
;; . oconditions is a difference approximation for the problem
kS
& t = Uyx * wd = 0, u(0,x) = ulx), e (0,x) = vix) .
&
' To finish the proof, we must apply & standard technique, in order to prove the convergence
e
;-; of the solutions of the difference equation to the solution of the differential equation.
s o
Consider a continuous non-linear functional F on H* @ l‘" (R 4s the Sobolev
iy
%0 space) such that |F(u,v)| € 1. Then
IR
\‘ J Flu,v)au = :1: 4, | Flug(E,x), vyin,x))exp(=2e8,/(20+1))a5aNeD . '.,'i
a €
i The coordinates (A,B) and n are linearly dependent, therefore AAdD = eu&\. From the
o~ invariance of the measure 4£dn under the flow (4.4) it follows that 2
d AR
A &, | F 10,081 (9, (€)% (n))Jexp(=2vm,/(20+1) }aE AASD g
(4.5) LR
l...d >
-q, JF f(ﬂ.(:)p'.(ﬂ)]‘lp('zlﬁ/(”-ﬂ)’“m . t}\
. The expression on the right hand side of (4.5) converges to | F(u,v)dy when N+ o, By | ]
::'.' the same technique as in Lesmas 1 and 3 (the spaces h® and the Duhamel formula) it is
il
L easy to verify that 1'0.(1:):' are uniformly continuocus with respect to N as operators
-
™ from Lip® @ MP'-‘ into B® e, 0¢a < V2. Taking into account Lemma 4,
) Flo (tiry(u,v)) + Fio(t)(u,v)], (u,v) € vip® o Lip®t . ey
¥ "R
"; By the Lebesque theorsm, the left hand side in (4.5) converges to | F [#(t)(u,v)]d& when R
< & P
:‘:‘ W + @, Therefore }‘.-. .
oS R
% J Flu,v)u = | FLo(e)(u,v))an . -
" ) The last formula means the invariance of 4 under &(t). L
N !b{;e
o
:: akd
2 1 NOTR: After sending the paper to the publisher, we discovered that the main results of Pf-.;
, Section 1 -~ Theorem 1 and the formula (0.9) ~ were proved simultaneocusly, independently and
i 2E
" by different methods by Mariuss Wodsicki [9). ;: A
": . .,f
5 §.' ,
a8 * 2
: oyl
. [
'
N
o
8
. P N ™ -y v ) W W T, »\- » -; ‘-‘-;- “ e ..\ R - _-. ;‘_ . - “.
S M‘K‘ . i '? :;% ??f yt o A4 ‘ '3. .\,“\V\S&\‘, ? "y ﬁf\k l“lq \f\' '} 3";. ‘;::Q \:‘\ f‘.;'.;ax‘ﬁ:.'
. % *"'¥ I‘A‘ e o \fl ?it’ ., t%‘:’\ﬁ , q " 1%". \ ‘ \ ‘ .’ Aoy ) By oY ‘ .
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